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Abstract

The calculation of heterojunction band offsets was treated in a large number
of papers. Most of them are based on assumptions which are not sufficiently
justified. We present a general theory for the band offsets allowing for a deeper
understanding of principles determining band offsets. At first an exactly de-
fined equilibrium condition is used. Secondly both the band bending and the
microscopic charge redistribution at the interface are taken into account by
considering the dependence of the charging of the gap states on the band
bending. The theory is applied to 19 heterojunctions. The meart absolute
and the maximum deviations frorri the experimental values are significantly
smaller than the corresponding values of the Tersoif theory. The latter and
other previous theories are contained in our formulation as special cases.

1. Introduction

Physics and device applications of heterojunction band discontinuities are the subject of numer-
ous publications (for reviews see [1,2,3]). The band alinement and the corresponding valence
and conduction band offsets are intimately connected with the charge transfer between the two
semiconductors on both sides of the heterojunction. This charge transfer is determined by the
equilibrium condition together with properties of the interface as interface states and bulk prop-
erties including doping. Due to the large number of influences in the theories on band offsets till
now usually only one or some of these influences are assumed to be dominating. But agreement
with the experimental values was achieved by Tersoff [4]. He proposed that the band offset is
determined by the requirement that the effective midgap (or neutrality) levels have to coincide.
Then a charge transfer on an atomic length scale and the corresponding dipolc layer are neglected.
A large group of papers is based in principle on the assumption of equalizing reference levels for
the band energies of both semiconductors and the occurrence of a microscopic dipole layer due to
the difference of the reference levels [I]. These theories (e. g. [5,6,7]) differ from one another by
quite different assumptions on the reference levels, and usually also the dipole is neglected. The
agreement with experiment is worse than in the Tersoff theory. In one case the result coincides
with the electron affinity rule of Anderson [8]. But actually in this case and in related theories
[9,10] in addition pure surface quantities are introduced which in fact are' absent at the hetero-
junCtion. This also holds for the more fundamental theory of Mailhiot & Duke [11].
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In this paper a more general formulation of the theory of band offsets is presented. It allows for
at first a classification of the former theories, shows the connection between them, and gives at
the same time a deeper understanding in the mechanism determining the band lineup. Calculated
band offsets for 19 heterojunctions show a significantly smaller mean and maximum deviations
from experiment than all previous theories.

In section 2 from the equilibrium condition the magnitude of the required total interface dipole
is calculated. This includes a unique definition of a reference level for the bulk energies. Also,
a separation of the influence of doping is possible. In section 3 it is shown that the band offset
is determined by the splitting of this interface dipole into a contribution of the band bending
in both semiconductors and a second one arising from charge redistribution on an atomic length
scale. The connection with former theories and relations between them are demonstrated. In
section 4 the contribution of charged gap states to the microscopic interface dipole is determined.
We prove that contrary to Tersoff [4] the magnitude of this contribution has to be considered. A
final expression for the band offset is derived in section 5. It takes into account especially the de-
pendence of the charging of gap states on the band bending as an important feedback mechanism
stabilizing the band offset. Numerical examples are presented showing the success achieved with
this formulation. Separately, in section 6 the connection with the electron affinity rule is discussed.

2. Equilibrium condition

As the starting point we consider a unique system consisting of two half infinite solids. The dif-
ference in the (electro-) chemical potentials has to be equalized by a charge transfer resulting 'in
thermodynamic equilibrium. Hence, the initial difference in the chemical potentials is equal to the
interface dipole Po arising from this charge transfer. But the (electro-) chemical potential depends
on the energy zero and the problem is to find out the appropriate reference level for the chemical
potentials. In principle this is already known for a long time. Nevertheless, the theory is not
well established as will be shown here. Having two solids with real surfaces the initial difference
in chemical potentials is given by the contact potential ujj. defined as the difference of the work
functions. But the contact potential is not suitable for describing the charge transfer producing
the contact properties because the work functions contain free surface dipoles which are absent at
the contact [12,13,14]. So, one has to remove the surface dipoles before calculating the "initial"
difference in chemical potentials [15,16].

For one half infinite solid the charge distribution without the surface dipole is a cutted (total)
bulk charge density Qco(f) = Q(t) %co _ ") where Q(i') is the charge density of the infinite system
[17]. After parallel averaging the cut off density has an electrostatic potential which is bulk-like
inside and which has to be constant outside the cut-of plane z = zco· Therefore, just this cut-oh
potential is the appropriate reference level necessary to determine the initial difference in chemical
potentials. Hence, we have to calculate the chemical potential relative to the cut-off potential 'Pco
outside :

µb = µ — 'Pco · (2.1)

The definition of the chemical potential µb is unique only for a unique definition of the cut-off

plane zco. It will be shown that zco is determined by the bulk charge density Q(i') alone. First,
all charge densities are averaged parallel to the interface (mathematically the :t — y—plane). Let
a be the periodicity length of the bulk density in z—direction. Then the bulk density q(") has the
following properties for all z:



Z
J d"' 1?("') = 0 , 4'(") = '?(" — a) " (2.2)

Z " a

Thus, the neutrality requirement alone does not fix zco· But from (2.2) and Poisson's equation
one has the electric field strength

Z
E(z) = Eo1a z Ja dz' z' ,Q(Z') · (2.3)

From (2.3) one obtains that outside the cut off density

Qco(z) = Q(Z) %co " Z) (2.4)

the electric field (2.3) vanishes only if the first moment of the bulk density e(z) becomes zero:

ZCO

J dz Z e(z) = 0 . (2.5)

ZCO " a

The cut-off plane zco is uniquely determined by (2.5) for a given surface orientation and, for a
more complicated crystal structure, a given top atcnnic layer. Having determined the cut-off plane
zco using (2.5) one can calculate the cut-off potential ¢Pco· Its value relative to the averaged bulk
electrostatical potential < 'p(z) > will be denoted by

LJ^Pco,m ± 'Pco _ < 'P > (2.6a)

and equals the second moment of the total charge density
ZCO

&'co,m " " 2e: a zcoj a dz z2 e(z) > 0 (2.6b)

where (2.2) (2.5) were used and

%0
P< (,0 > = 1 J dz 'p(") · (2.6c)

a
ZCO " a

The sign of ^'Pco, m in (2.6b) arises from the fact that the positive ionic charge is more localized

than the electron density. Now one can rewrite (2.1) as

µb = ji — A'p,o, m (2.7a)

where

µ = µ— <'p> (2.7b)

is a pure bulk property. Hence, the potential outside the cut off density needed in (2.1) can be
calculated from bulk properties using (2.5) to (2.7).

In order to calculate the chemical potentials µb for semiconductors besides (2.7a) a further split-

ting of this quantity is advantageous. The energetic distance of the chemical potential from the
conduction band edge in the bulk

C " e, — µ = eu + Eg — µ ' (2.8)

depends strongly on temperature and doping. Together with (2.8) one obtains for (2.'1)

µb = e! + Eg - C (2.9a)

where



'! = 'u - [p,, (2.9b)

is the valence band edge relative to the cut-off potential. In (2.9a) doping and temperature in-
fluence,tainli C alone. In addition, no g:p prjoblem of the density functional theory occurs in
determining %. A further advantage of using % becomes clear below.

Frensley & KrOmer [5] calculated the valence band edge relative to the mean interstitial elec-
trostatic potential <1'" = £u — ii. As a rough estimate ii 2± 'Pco can be used and hence one

has

'! = <"" = ', - ii . (2.10)

It should be mentioned that the original idea of Frensley & KrOmer giving rise to calculate ,jFK
, Uis very different from the derivation given above.

Now we turn back to contacts. The total system in equilibrium consists of two sticked cut off
densities Qcoi (z) and eco2 (z) and the interface dipole layer charge density 6qo(z):

Qo(z) = 6qo(z) + Qco1 (z) + Qco2(z) (2.11a)

with

Qco1(z) = Qj(Z) %co1 Z) (2.11b)

Qco2(z) = Q2(z) 0(z — Zco2) ' (2.11c)

Before thermodynamic equilibrium is reached (6qo = 0) the diiierence of the"chemica1 potentials
is given by the difference of their volume contributions µb of the two solids since the boundary

condition for the electrostatic potential requires 'Pco1 = 'Pco2 (Fig. la). This difference has to be
compensated (Fig. 1c) by the interface dipole

Po = -µ! + µf (2.12)

connected with the occurence of the deviation '5eo(z) of the total charge density from the sticked
cut off densities (Fig. lb) by

+00

P, = - t _t dz 6q, z . (2.13)

Eqs. (2.11) to (2.13) represent the equilibrium condition. In addition, mechanical equilibrium has
to be considered. But contrary to the jellium calculation of Mailhiot & Duke [11] it influences
only the shape of the charge transfer 6eo(z) and the position of the ions in the solid 1 relative
to the ions in solid 2 and not the value of Po. Reconstructions (if any) have to be considered in
calculating '5qo(z) whereas Po is fixed by the two bulk systems including interface orientations
(and the top layers). '

With the notation AE z E, — E, (lower indicees 1,2 for the two half spaces left and right,
respectively) and using (2.9a) we obtain a new expression determining the interface dipole Po
(2.12)

P, = -LJdi! - AEg + AC . (2.14)

This equation represents the equilibrium condition for semiconductor (hetero)junctions in connec-
tion with (2.11) and (2.13) [18].

At the end of this section three former approaches will be discussed. The correct splitting of the
work function ¢). into surface dipole P and volume contribution is given by [19]



S = p - µb . · (2.15)

In the literature [8,20,21] often the difference of the work functions

UK = st', - q5, (2.16)

is used instead of Po. Actually, together with (2.15) and (2.12) this is

UK = P, - P, - µf + µf (2.17a)

uK = P, - P, + P, . (2.17b)

Thus, uk contains besides Po the two surface dipoles. Furthermore, (2.17b) itself is valid only if

the surface orientations at the free surface and at the contact are the same in each case. Sometimes
[9,11,15] (2.17b) is used to determine Po. But then three interfaces have to be analysed. This
introduces additional difficulties. Likewise for the interface dipole [11,16]

Po = -E + E (2.18)

was used. This is valid for the jellium model only. A correct and complete description of the in-
terface dipole was missing in the past. Even in attempts starting from cut off densities to describe
surfaces [17] the eqs. (2.5) to (2.7) have not been given.
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Fig. I: Electrostatic potentials (a) of the two cut off densities Qco1 and Qco2: (b) of the interface

dipole layer charge density '5eo, and (C) of the total charge density eo in thermodynamic equilib-

rium. - (Note that in this picture, contrary to heterojunctions, the density ®0 is extended only

microscopically. )



3. The band offset

At semiconductor heterojunctions one is interested in the relative position of the band structures
of the two materials near the interface. The corresponding quantities are the band offsets defined
by

^Eu = E,, — Eu, , AE, = AEu + AEg (3.1)

where the band edges are measured near the interface on the same energy scale. The schematic
band diagram is shown in Fig. 2. Due to charged interface states there will be a band bending
on both sides of the mathematical interface. Since in thermodynamic equilibrium the chemical
potentials are equalized the chemical potential can serve as aij energy zero for determining the
band offsets. Then the valence band edges at the interface Eui depend on the total band bending:

Eui = ¢i " Egi + V;,j· (Here the band bending V;, is positive always if the bands are bent

upwards in direction to the mathematical interface.) Then we obtain (see also Fig. 2)

^Eu = ^C - AEg + LW, . (3.2)

Thus, the band offset can be calculated already if the so called "built-in potential" AV;, is known.
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Fig. 2: Energy diagram of a heterojunction in the scale of the Debye screening length.

In order to equalize the chemical potentials an interface dipole Po is built up (2.14). The interface
dipole Po consists of the difference of the band bending V,), " J/o2 and an additional contribution
D,) due to charge redistribution on an atomic scale at the interface:

Po = D, - AV, . ' (3.3)

Comparing (3.2) to (3.3) one can eliminate both the band bending V,, and V,,. Together with
(2.14) one gets

^Eu = ^e! + D, . (3.4)

In this expression contrary to (3.2) the band bending does not occur explicitely. Apparently, from
(3.4) one could conclude that the only (self-consistent) interface property influencing the band off-
set is the dipole Do at the interface. Nevertheless, the original problem of determining Do from
(3.3) remains since the band bending and the dipole Do are indeed coupled as will be explained in
detail in the next section. Before doing this we want to discuss some microscopic concepts in the
literature in which band bending and thermodynamic equilibrium were not consistently considered.



Most of the concepts do not start with thermodynamic. equilibrium and alinement of chemical
potentials due to band bending. So, only the interface region extended over several A is considered.

Typically, first "absolute" reference levels R. are introdiiced. Then the valence band edge E .
relative to this reference level R. is calculateQ for each semiconductor: ui

2

E . = 'E . - R. . (3.5)
m UZ I

After equalizing the reference levels Rl and R2 appropriate to

Do = R, - R, (3.6)

where Do is a dipole due to charge redistributions at the interface the difference of the valence
band edges ^Eu (band offset) is obtained with (3.5) (3.6) as

LJ-EJ = %2 " %1 + Do . (3.7)

The "absolute" valence band energies e . should be determined by bulk properties only.
UI

One example for such a procedure is the work of Adams & Nussbaum [7]. They used the intrinsic
Fermi-level as reference. Since the valence band energies eu were calculated in the bulk one obtains
^Eu = ^C —, AEg, + Do contrary to (3.2) and (3.4). This shows clearly that in this approaih

band bending is omitted. In the original paper Do was neglected at all. A further development
of the theory was given by Unlu & Nussbaum [22]. Other microscopic concepts did not consider
the chemical potentials. Harrison [6] constructed the crystal potential simply by superimposing
atomic orbitals. Then the potential at infinity was regarded as reference and the valence band
energies calculated by tight-binding theory had to be inserted in (3.7) neglecting any dipole Dq.
Some corrections were made subsequently (see [I]). According to Ruan & Ching [10] Harrison's
theory coincides with the electron affinity rule established by Anderson [8]. Actually, measuring
the valence band edges at free surfaces relative to the potential outside the free surface would give
€u = _¢PE where ¢PE is 'the photoelectric threshold [23]. Together with (3.7) one gets the elec-

tron affinity rule AEu = —Mpe for Do = 0. But Anderson's original idea is not a microscopic
concept as will be shown in section 6.

Frensley & KrOmer [5] assumed that the mean interstitial potentials R = ii are the appropriate
reference levels. Their ralence band energies E:K mentioned already above (2.10) used to predict

the band c"!fset in (3.7) yield (neglecting Do) only moderate agreement with experiment

^Eu = Lk:" - (3.8)

They also estimated a correction Do determined by differences of averaged electronegativities but
this did not improve their results. Nevertheless, if Do would be taken into account correctly this
approach is equivalent to the correct formulation (3.4) within the approximation (2.10).

According to Tersoff [4] the effective midgap energies R = Eb of the two semiconductors have
to be identical. Any deviation of the two levels at the interface would induce a strong dipole
Do = Dus due to charged gap states which forces the midgap levels Eb together. Since Eb is
measured relative to the valence band edge (% = _Eb) the valence band offset is given by

^Eu = - ^Eb . (3.9)

Tersojf's approach will be discussed in more detail later.

These microscopic concepts do not contain band bending which is a part of the interface dipole
(3.3). 'But comparing (3.7) to (3.4) one sees a similarity. (Note that (3.4) was derived using



chemical potentials and thermodynamic equilibrium which are both absent in microscopic the-
ories described above.) Thus, the microscopic concept is correct provided that one chooses the
reference levels R = 'Pco defined uniquely relative to the band structure. However, from the failure
of the Frensley & KrOmer attempt [5] one can realize that the contribution Do is not negligible.
On the other hand the success of Tersoff's approach [4] shows that gap states are important. But
any dipole Dus produced by these charged gap states can only be calculated if band bending is
considered. The fundamental problem of splitting up the interface dipole Po into space charge
contribution AV;, and Do due to charge redistribution on an atomic scale remains both in (3.2)
and (3.4).

4. Microscopic interface contribution and charged gap states

Similar as in the case of metal-semiconductor contacts the microscopic interface contribution Do
can be regarded as consisting of two parts [15]:

Do = D, + Dus (4.1)

where De is due to the smooth matching of the valence charge densities and Dus is created by
charged gap states. Whereas De was estimated already by Tejedor, Flores & Louis [15] Dus was
not investigated thoroughly in the literature.

For the two semiconductofs on both sides of the interface neutrality levels ¢'ni (relative to the

valence band edge at the interface) are defined such that one has local neutrality if this level
coincides with the chemical potential: ¢ni = Egi " Cj " J/oi"· In general the chemical potential

deviates from eni by

6E . = E . - C. - V . - ¢' . . (4.2)
FZ gz I OZ m

This quantity depends itself on the band bending VQj and gives rise to charged gap states with a

charge per unit area [24]

C' . = - eN .6E . (4.3)
use us2 fz

where /Yusi is the density of gap states nea' ¢'ni [21] in the semiconductor i. Eg. (4.3) is already

linearized assuming 6E . to be small compared to E .. The total charge
FZ gz

%s1 + (jUS2 = 'JUS (4.4)

gives rise to band bending and space charge layers in both semiconductors. There remains a
microscopic dipole layer of charged gap states with the effective (screened) extensions 6. giving
rise to i

¥

D,,, = - t [ 6, CL,,, - 6, %,, ] . (4.5)

Via (4.3) (4.2) D,,, depends on the band bending. One can rearrange (4.5) with (4.3) (4.4) as

with

D,, = - a 1 6E,, - 6E,, ] - t 6':::: + },::" %,

a, ±

e2(6:0+'52) / , N:s1+ Nu1s2 : '

(4.6a)

(4.6b)



The effective extensions 6. and the densities of states N . describe exponentially decreasing gap
2 USZ

states. Because of neutrality —% s equals the total charge contained in the two space charge
layers. That's why this quantity is very small compared both to %s1 and %s2· Therefore, if
the gap energies of the two semiconductors are not too much different the second term in (4.6a)
can be neglected and Dus is proportional to [6Ef1 _ '5Ef2 ] which is the energetic distance of the
two neutrality levels, and the chemical potential is situated in between them. This situation was
already supposed by Flores & Tejedor [9] and Tersoff [4] but without the second term of (4.6a)
and without the expression (4.6b) for a. Within this approximation the total dipole (4.1) is with
(4.6a)

Do = D, — cv [ 'SEF, _ 'SEF2 i · (4.7)

According to (4.2) the dipole contribution depends on the band bending on both sides of the
interface. But, using (3.2) one can replace it by the band offset as

6Ef, - (5Ef, = AEu + Mn (4.8)

and the dipole contribution (4.7) is

Do = D, - at (^Eu + Mn ) . (4.9)

Thus, the dipole contribution (4.9) depends on the band bending but the latter itself is propor-
tional to Do as seen in (3.4). This coupling between the two quantities represents a negative
feedback mechanism which stabilizes the band offset at its equilibrium value. The physics of
this mechanism will be discussed now in some more detail. At first, according to (3.2) the band
offset is proportional to the band bending difference ^Vo. Let us now assume a slight increase
of ^Vo and hence of ^Eu. Then, according to (4.8) the difference of the two neutrality levels
(with the chemical potentials in between) increases too: Therefore, the charged gap states in the
semiconductor 2 (right) and 1 (left) get a additional positive and negative charge, respectively.
Accordingly, the contribution (4.7) decreases and this leads to a decrease of ^Eu (3.4) contrary to
the supposed increase. Some feedback mechanism was also proposed by Flores & Tejedor [9] and
by Ruan & Ching [10]. That's why the theory of the latter provided quite reasonable good results.
In Tersoff's theory [4] the effect of the gap states was immensely overstated. He assumed that
there is no dipole contribution besides Dus (De = 0). Then, according to his verbal arguments
any deviation of the two neutrality levels is prevented by a (too) large dipole Dus leading to the
band offset ^Eu = — Mn (4-8) ("f. (3-9)). But if, in fact, (5Ef, — 6Ef, is very small as supposed
by Tersoff the dipole Dq (4.7) is small too since a < 10 (De = 0, Eg,Eg2 > 0.7 eV'). However,

Do = 0 leads with (3.4) to ^Eu = Lkj which in general deviates considerably from — Mn, a'

will be demonstrated with the numerical examples given in the next section.

5. Evaluation of the band offset

In the preceeding sections it has been shown that the band offset ^Eu and the dij?ole contribution
Do are given by the two coupled equations (3.4) and (4.9) containing the equilibrium condition
and the connection between band bending and charging of the gap states. These two equations

can be solved giving
^Eu _ 1 : a [Lk! + D, ] - 1 : a Mn (5.1)

Do "l:a,De _1:a [Lk!+^¢'nl (5.2)



where a is given by (4.6b). These equations contain only three approximations: (i) The expression
(4.3) is a linearization. It gives only a minor error since according to our numerical applications
usually the 6E . are smaller than one tenth of the gap energy. (ii) The second term in (4.6a) is

FI
neglected. Our" estimates have shown this approximation to be justified. Note that for that reason
the band offset does not depend on doping in accordance with experimental observations. But
even if in some cases this term would not be small compared to the first one it could be added
to De in (5.1) and (5.2) which itself has only a small influence as will be proved below. (iii)
There is a principal uncertainty in deviding the total dipole Po (2.14) into the band bending and
the microscopic contribution (3.3). This uncertainty is just the change of the band bending over
the extension of the microscopic dipole layer which is less than 0.01 eV. Therefore, the relations
(5·1) (5.2) are practically exact ones. For at ~ cjo (infinite density of gap states) (5.1) gives just
Tersoff's rCsult (3.9) even if D, 74 0 but with a finite Do (5.2). On the other hand for a ~ 0 (5.1)
one gets a result similar to that of Frensley & KrOmer (3.8) and then according to (5.2) the only
contribution to Do is just De.

To evaluate (5.1) (5-2) one needs the valence band energies e! (2.9b), the neutrality levels ¢n)

the quantity cv (which is a kind of polarizability) and the dipole De due to smooth matching of
the valence band states (exactly up to the lower neutrality level in the gap). De can be treated
approximately as in the work of Tejedor, Flores & Louis [15] and of Duke & Mailhiot [16]. But
it will be neglected here (see below). Further for Ej we use the values <k (2.10) of Frensley &

KrOmer [5] and for the neutrality levels ¢'n the effective midgap values Eb [25,26] of Tersoff:

D, = 0 , '! = ':"" [5] , ¢n = E, !25,26] . (5.3)

In a first estimate [19] we used a common value a for all contacts. Already in this case an
improvement compared to Tersofl?s values was achieved. A better estimate without going too
much into perticulars of the electronic structure is already possible by using the simplest complex
gap band structure which is symmetric relative to the midgap energy. Then within a nearly free
electron model (lattice constant a) the minimum decay length of the wave function is

1 2r h' 47.8 eV A' (5.4)
q " mo Eg a Eg a '

Hence, the effective extension [27] of the charge in gap states is

,5 1 9.57 cV A' (5.5)~2q 4sr " Eg a

where €usr = 2.5 is the effective dielectric constant appropriate to length 1/2q. In addition the
density of gap states is given by

2 (5.6)
/Yus 2± 7r a2 Eg '

In Tab. 1 we report all data necessary to calculate band offsets using (5·1)-(5.3). The gaps Eg

and lattice constants a are taken from Landolt-BOrnstein [28] and Ruan & Ching [ID]. Then the
minimum decaying length 1/2q and the effective extension 6 of the gap states were calculated
using (5.4) and (5.5), respectively. The density of gap states N,,, "stimated with the help of (5.6),
the volume contributions E:K [5] and the midgap energies Eb [25,26] are also given.



Table I: Values for calculating the band offsets (/Yus in 1018 m-2eV"')

sem. Eg ("V) a ('i) 1/2q (it) 6 (ii) N,,, <k (eV) Eb ("V)

. .

Ge 0.67 5.658 6.311 2.524 2.968 -3.25 0.18
GaSb 0.72 6X)94.r 5.452 2.181 2.381 -3.89 0.07
Si 1.11 5.431 3.968 1.587 1.944 -3.16 0.36
InP 1.26 5.869 3.235 1.294 1.467 -4.58 0.76
GaAs 1.43 5.642 2.965 1.186 1.399 -3.96 0.50
CdTe 1.44 6.477 2.565 1.026 1.054 -4.90 0.85
AlSb 1.60 6.136 2.437 0.975 1.057 -3.94 0.45
ALAs 2.15 5.661 1.966 0.786 0.924 -3.96 1.05
ZnTe 2.26 6.101 1.735 0.694 0.757 -4.74 0.84
GaP 2.27 5.450 1.934 0.773 0.944 -4.12 0.81
ZnSe 2.67 5.667 1.581 0.632 0.742 -5.07 1.70

Using the data of Tab. 1 we calculated the band offset (5.1) and the microscopic dipole contri-
bution (5.2) for those heterojunctions for which experimental data for comparison are available.
The latter are taken from the compilation [I]. The calculated values are given in Tab. 2 together
with the values of Frensley & KrOmer [5], Tersoff [25,26] and the experimental ones [I]. Frensley
& KrOmer's result deviate significantly stronger from experiment than Tersoff's. Eg. (5.1) shows
that this fact tyises froi;i !h? relatively large values a = 2 . .. 11 (Eg1Eg2 < 3 eV2) whereas the
Frensley & Kromer limit is just a = 0. On the other hand our complete description gives a
further clear improvement compared to the Tersoff values. Besides the smaller mean square and
maximum deviations from experiment it is important that for the 19 heterojunctions considered
in 13 cases our result is better than Tersoff's. It should be mentioned that the mean square and
maximum deviations are 0.27 eV and 0.6 eV for the electron affinity rule (see below). Thus the
improvement obtained here is really important.

The calculated dipole Do (Tab. 2) in general has the same order of magnitude as the band offset
and therefore it is not negligable as resulting from Tersoff's theory. In our calculation De = 0
was assumed. For I De 1< 1 eV and with the values a (Tab. 2) eqs. (5.1) (5.2) show that this error
will be of the order 0.1 . . . 0.3 eV which is just the same order as our deviations from the experiment.

Finally, it should be mentioned that the theory outlined here and resulting iij (5.1) (5.2) is "non-
linear" in so far as the resulting band offsets are not transitive in agreement with experimental
investigations [2]. This non-linearity, of course, is a result of the discussed feedback mechanism

connecting the equilibrium condition with the coupling between charging of the gap states and
band bending. Note that if the surface orientation and the doping of each semiconductor are the
same for the contacts considered, the interface dipole Po is transitive. Nevertheless, its parts AVq
and Dq (and therefore the band offset) are not transitive, since a connects properties of the two

semiconductors non-linearly.



Table 2: Calculated band offsets ^Eu (5.1), the calculated dipole Do (5·2) -(see. also eqs. (4.6b)
(5.3) and Tab. I)-, and for the sake of comparison the band offsets of Frensley & KrOmer (3.8),
of Tersoif (3.9), and from experiment [I] (' * ' averaged) (all values except cv in eV)

sc. 2 sc.1 cv ^E$ -Mn ^Eu ^Eu D,,
[5] [25,26] this exp.

Si Ge 8.74 0.09 -0.18 -0.15 -0.28 * 0.24
GaP 2.71 0.96 0.45 0.59 0.80 -0.37
GaAs 4.08 0.80 0.14 0.27 0.05 -0.53
GaSb 7.30 0.73 -0.29 -0.17 0.05 -0.90
InP 4.36 1.42 0.40 0.59 0.57 -0.83
ZnSe 2.16 1.91 1.34 1.52 1.25 -0.39
ZnTe 2.25 1.58 0.48 0.82 0.85 -0.76
CdTe 3.23 1.74 0.49 0.79 0.75 -0.95

Ge ALAs 4.22 0.71 0.87 0.84 0.86 * 0.11
GaP 4.27 0.87 0.63 0.68 0.8 -0.19
GaAs 6.38 0.71 0.32 0.37 0.49 * -0.34
GaSb 11.25 0.64 -0.11 -0.05 0.2 -0.69
InP 6.78 1.33 0.58 0.68 0.64 -0.65
ZnSe 3.39 1.82 1.52 1.59 1.40 * -0.23
ZnTe 3.51 1.49 0.66 0.84 0.95 -0.65
CdTe 4.99 1.65 0.67 0.83 0.85 -0.82

GaAs AIAs 1.99 0.00 0.55 0.37 0.34 * 0.37
ZnSe 1.60 1.11 1.20 1.17 1.03 * 0.06

GaSb AlSb 4.18 0.05 0.38 0.32 0.4 0.27

deviation m.squ. 0.56 0.21 0.15
from exp. max 0.99 -0.37 0.27

6. Band offsets and electron affinity

In order to discuss the electron affinity rule and related concepts two exact equations for the band
olfset should be derived. The work function ¢'s of a semiconductor written in terms of measured
quantities is given by [29]

t
¢s = Xs +V, +C (6.1)

where J/s is the total band bending at the surface and the electron affinity Xs is obtained via the
photoemission threshold

¢PE = X, + Eg . (6.2)

Replacing C in the definition of the band offset (3.2) by the work functions (6.1) and the difference
of the latter by the contact potential up,. using (2.16) one obtains

AEu = — AX, - AEg + UK + AV, - AV, . (6.3)

This equation does not contain the equilibrium condition. The correct splitting of ¢'s into surface
and volume contributions is given by [19]



0, = V, + D, — µb . (6.4)

where Ds is due to charge redistribution on an atomic scale. Comparing (6.1) to (6.4) (and using
(2.9a)) one obtains

X, = D, - e! - Eg . (6.5)

Inserting (6.5) into (3.4) (just this equation contains the equilibrium condition) the band offset is
given by

AEu = - ^X, - AEg + ( D,, + D,, - D,, ) . (6.6)

Eqs. (6.3) and (6.6) enable us to discuss several attempts to calculate the band offset using prop-
erties of free surfaces.

According to Anderson [8] the valence band offset is given by

AEu = - AX, - AEg = - Mpe · (6.7)

His original idea can be explained with the help of (6.3). Sticking the two semiconductor surfaces
together the initial difference of the chemical potentials ujj- (contact potential (2.16)) is equalized
by change of the band bending only. So, it is not necessary to require flat bands (J/s = 0) at the
free surfaces as assumed by Anderson. The corresponding physical background can be extracted
from (6.6). From this equation the electron affinity rule (6.7) is obtained for Do = Ds, " 42·
That means superposition of the localized surface dipoles Ds1 and 42 when the two solids are
brought together to form the contact. The only moderate agreement of (6.7) with the experi-
ment shows clearly that no superposition of that kind takes place. Although (6.6) can already be
found in the work of Flores & Tejedor [9] it was first derived by Mailhiot & Duke [11] starting
with bulk properties determining an equilibrium condition. But, for instance, the contributions
^'Pco, m were omitted and flat bands at the free surfaces were assumed. It should be noted that
in equations as (6.6) containing measurable quantities of the free surfaces the advantage of using
this properties is lost since one needs then the unknown microscopic dipole contributions D . of

SZ
the free surfaces. To calculate them is as difficult as to calculate the interface dipole.

7. Summary

The theory of band offsets at semiconductor heterojunctions presented here uses the equilibrium
condition with properly defined reference levels for the chemical potentials. The dipole layer aris-
ing due to equalizing these chemical potentials contains a contribution from the band bendings
in the space charge layers and a microscopic dipole layer being dominated by the charging of gap
states due to the deviation of the neutrality levels from the chemical potentials. This charging of
gap states depends in turn on the band bending. This theory allows for a complete understanding
of the mechanism stabilizing the band offset at its equilibrium value. Also the approximations
underlying actually previous theories became clear in this way. The results of Frensley & KrOmer
and of Tersoff are special limits of our theory for vanishing and infinite densities of gap states,
respectively. For 19 heterojunctions the calculated band offsets show a mean square deviation
from experiment 60 meV less than the Tersoff theory and the absolute value of the maximum
deviation is 100 meV smaller. For 13 of the 19 heterojunctions the calculated values are better
than Tersof's and for further two both results deviate only slightly from experiment.'
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